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Establishing the relation between detrended fluctuation analysis and power spectral density
analysis for stochastic processes
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Stochastic fractal signals can be characterized by the Hurst coefficientH, which is related to the exponents
of various power-law statistics characteristic of these processes. Two techniques widely used to estimateH are
spectral analysis and detrended fluctuation analysis~DFA!. This paper examines the analytical link between
these two measures and shows that they are related through an integral transform. Numerical simulations
confirm this relationship for ideal synthesized fractal signals. Their performance as estimators ofH is com-
pared based on a mean square error criterion and found to be similar. DFA measures are derived for physi-
ological signals of heartbeatR-R intervals through the integral transform of a spectral density estimate. These
agree with directly calculated DFA estimates, indicating that the relationship holds for signals with nonideal
fractal properties. It is concluded that DFA and spectral measures provide equivalent characterizations of
stochastic signals with long-term correlation.

PACS number~s!: 05.40.2a, 05.45.Tp, 87.10.1e
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I. INTRODUCTION

Stochastic fractal signals arc characterized by a variet
unusual statistical properties, such as self-similarity~or self-
affinity!, power-law statistics, and correlation over all scal
These signals are of interest since they can be used to m
phenomena as diverse as heart-rate variability@1–7#, the se-
quence of base pairs in DNA@8,9#, financial volatility @10–
12#, gait fluctuation @13#, image texture@14#, and cloud
breaking @15#. They can be characterized in a number
ways—by their fractal dimensionD, through the Hurst coef-
ficient H, or by estimating a scaling exponenta of their
power-law statistics. One motivation for estimatingD, H, or
a lies in the fact that these measures may potentially be u
to classify or discriminate between different types of sign
e.g., Amaralet al. have suggested that a scaling expon
may distinguish between healthy and pathological heart
namics @5#. In order for such classification schemes to
robust, estimates of the fractal dimension must be accu
and reliable, and hence much interest has centered on
able approaches for estimating the fractal dimension, or
lated parameters, from experimental data sets. Techni
that have been proposed for the estimation of fractal beh
ior include correlograms and semivariograms@16#, spectral
analysis@17#, rescaled range analysis@18#, the Fano factor
@19#, Allan variance @20#, wavelet transform variance
@21,22#, detrended fluctuation analysis@9#, scaled windowed
variance analysis@23#, dispersional analysis@24#, and maxi-
mum likelihood estimators@14,25#. Two good review articles
of the range of techniques available are the papers by M
mud and Turcotte@16# and by Taqqu, Teverovsky, and Wil
inger @25#. These articles, and others@17,26#, report on com-
parative empirical studies of these techniques and
performance of the various estimators. The theoretical r
tionship between some of these techniques has also
explored. For instance, the relationship between dispersi
PRE 621063-651X/2000/62~5!/6103~8!/$15.00
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analysis and the correlation function of the underlying p
cess is established in@23#, and that between spectral analys
and fractal dimension was shown in@27#. In this vein, one of
the present authors~and others! attempted to provide furthe
linkage between the different techniques available. In@28#,
explicit links were forged between wavelet variance estim
tion, Allan variance, the Fano factor, and power spectral d
sity ~PSD!, and it was shown that all these measures could
expressed in terms of the power spectral density of the
nal.

Of the measures outlined above, detrended fluctua
analysis ~DFA! has recently been widely adopted in th
physical and biological sciences. Some of these reports
ply that the DFA measure provides information that cou
not have been otherwise obtained, or that it is inherentl
superior measure to existing techniques. For example, in@7#,
both spectral and DFA measures are used to assess ch
in neuroanatomic function, with the implication that the
measures were providing distinct views of the data. Inde
in the original paper introducing DFA, the authors propos
it as an independentmeasure of long-term correlation
complementary to spectral analysis@9#. To our knowledge,
however, the link between DFA and existing measures
not been clearly elucidated. It is the goal of this paper
show that DFA is simply related to the power spectral de
sity ~and indeed can be derived directly from a spectral d
sity estimate!, and hence to other measures such as wav
variance. Allan variance, and the Fano factor. The moti
tion for this is to clearly demonstrate that DFA does n
provide any information that cannot be obtained throu
spectral analysis. We present numerical simulations of id
fractal signals in which a direct DFA calculation~by least-
squares detrending! and a derived DFA measure~calculated
from the integration of a PSD estimate! are shown to provide
equivalent results. In addition, we provide some compari
of the performance of the DFA measure and spectral den
techniques in estimatingH for ideal fractal signals, and show
6103 ©2000 The American Physical Society
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6104 PRE 62C. HENEGHAN AND G. McDARBY
that their performance is similar. To confirm that the equiv
lence holds for signals that have a combination of fractal
nonfractal behavior, we calculate direct and derived D
measures for heart-rate signals. As further confirmation,
DFA measure at a specific scale is shown to provide sta
tical discrimination between normal and pathological d
sets, as previously shown using a spectral measure only@28#.

Fractional Brownian motion and fractional gaussian noise

Two classes of signal have been widely used to mo
stochastic fractal time series: fractional Gaussian no
~FGN! and fractional Brownian motion~FBM!. These are,
respectively, generalizations of white Gaussian noise
Brownian motion. They are related by the fact that inc
ments of a FBM form a FGN process~or alternatively FBM
represents cumulative summation or integration of a FG!.
A formal mathematical definition of continuous FBM wa
first offered by Mandelbrot and Van Ness@29#. To summa-
rize, a FBMb(t) is characterized by having Gaussian amp
tude statistics and an autocorrelation function of the form

cov@b~ t1!b~ t2!#5k1~ ut1u2H1ut2u2H2ut12t2u2H!, ~1!

wherek1 is a constant, and the parameterH varies between 0
and 1. H is usually referred to as the Hurst parameter a
can be traced to the parameter used by Hurst in his fun
mental studies in the field@18#. Since this autocorrelation
function is not a function oft12t2 , the power spectral den
sity of FBM is not well defined. However, by appealing
generalized concepts such as the Wigner-Ville spect
@30#, a limiting power spectrum can be obtained as follow

Sb~ f !5
k

u f ua
, ~2!

wherea52H11. The scaling exponenta of this power-law
spectrum lies between 1 and 3, sinceH is constrained to lie
between 0 and 1.

The autocorrelation function for fractional Gaussian no
can be obtained by defining a processg(t) as the increments
of a corresponding FBMb(t), to yield

cov@g~ t1!g~ t2!#5k2~ ut22t1u2H!, ~3!

where k1 is a constant, andH is the Hurst parameter a
before. The Fourier transform of this autocorrelation fun
tion is also not well defined, but as for FBM a limiting pow
spectrum can be found as follows:

Sg~g !5
k

u f ua
~4!

wherea52H21. SinceH lies between 0 and 1, the scalin
exponenta of the power-law spectrum of FGN lies betwee
21 and 1. Therefore the complete set of FGN and FB
stochastic sequences are defined to have power-law sp
with exponents lying between21 and 3. Further fractal pro
cesses could be defined with PSD power-law exponents
side this range, but in this paper we will restrict our attent
to FGN and FBM as defined above.

Discrete versions of FBM and FGN~DFBM and DFGN,
respectively! can also be formed@14#. Some care is neede
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in their definition, since theoretically the continuous FB
and FGN have infinite bandwidth. Hence the process of s
pling will introduce some aliasing. This is particularly sig
nificant for DFGN since the high frequency components
of higher magnitude than for DFBM. In this paper, we w
define DFBM as samples of a continuous FBM, with a sa
pling rateTs ,

b@n#5b~ t !u t5nTs
, ~5!

and take the aliasing effects as negligible. DFGN will th
be defined as the first differences of the DFBM:

g@n#5b@n#2b@n21#. ~6!

Following on from these definitions, the autocovariance a
autocorrelation functions of DFBM and DFGN can be wr
ten as

E†b@ j #b@k#‡5k2~ u j u2H1uku2H2u j 2ku2H!, ~7!

E†g@n1k#g@n#‡5r gg@k#

5
s2

2
@ uk11u2H22uku2H1uk21u2H#,

~8!

wherek2 is a constant, ands2 is the variance ofx@n#. Since
most real data sets are measured samples of some unde
continuous process, it seems reasonable to use the DF
and DFGN models throughout this paper.

As clearly noted in@31#, some of the estimators ofH have
a built-in assumption as to whether the signal under anal
is FGN or FBM, and will provide incorrect estimates ofH if
the signal model is incorrect. This point is often overlook
or ignored by many researchers. For example, dispersi
analysis is appropriate only for FGN, whereas scaled w
dowed variance is better for FBM@23#. Some methods~such
as spectral analysis and DFA! can be used for both FGN an
FBM processes.

For completeness we mention that the Hurst parameteH
is related to the Hausdorff-Besicovich dimensionD through
H522D @32#. D is the parameter most generally defin
as the ‘‘fractal dimension,’’ and lies between 1 and 2 f
FGN and FBM.

II. THEORY

Many different techniques for estimatingH from experi-
mental data sets have been proposed. This paper focuse
estimatingH using power spectral density estimation a
detrended fluctuation analysis, and on how these estim
are related.

A. Detrended fluctuation analysis

Detrended fluctuation analysis was originally proposed
a technique for quantifying the nature of long-range corre
tions by Penget al. in 1994@8#. It was introduced in order to
permit the detection and quantification of long-range cor
lations in DNA sequences. As implied by its name, it w
conceived as a method for detrending local variability in
sequence of events, and hence providing insight into lo
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term variations in the data sets. This technique has su
quently been used in the analysis of heart-rate variab
@1–16#, gait behavior@13#, financial volatility @10–12#, me-
teorology @15#, and geology@16#. Different authors have
used slightly alternative terminology to describe this te
nique. In@31#, DFA is cast as a special case of scaled w
dowed variance referred to as ‘‘linear regression detren
scaled windowed variance,’’ and Taqqu, Teverovsky, a
Willinger refer to it as the ‘‘residuals of regression’’@25#.

The DFA algorithm consists of the following steps.
~i! The data to be analyzed are a discrete-index sequ

u@n# defined for 0<n<L21. It can be assumed that th
sampling rate for this sequence is unity without loss of g
eralization. The average value of this sequence is set to z
by subtracting the sample mean. A running summation
quencey@n# is constructed from this sequence using the f
lowing recursion:

y@n#5 (
k50

n21

u@k#, y@0#[0, y@n#[0 ;n,0, ~9!

which can be recognized as the output of a simple infin
impulse response~IIR! filter applied tou@n#:

H~z!5S Y~z!

U~z! D5
1

12z21
. ~10!

~ii ! The entire sequence is divided intoM nonoverlapping
blocksym@n#, each containingK samples~so thatM5L/K!:

ym@n#5y@mK1n#, 0<m<M21, 0<n<K21.
~11!

The local ‘‘trend’’ in each block is defined to be a line
least-squares fit to the samples in that block. The tren
denoted asym,t@n#.

~iii ! A detrended signal is defined for each block as
difference between the original signal and the local trend
that block, leading to

ym,d@n#5ym,t@n#2ym@n#, 0<m<M21, 0<n<K21
~12!

The variance of the detrended signal is calculated for e
block. F1(K) is then defined as the average of the va
ances over all boxes:

F1~K !5
1

M (
m50

M21

var~ym,d@n# !. ~13!

The functional dependence ofF1(K) is obtained by evalua
tions over all block sizesK. It has been shown by Buldyre
et al. that F1(K) varies as a power law inK, i.e., F1(K)
'Kb for sequences with power-law long-range correlatio
such as FBM and FGN@9#. An alternative derivation of this
relationship is given in@25#. The parameterb can therefore
be used to estimateH, since it has been empirically dete
mined that b215a, the spectral power-law exponen
which in turn can be related toH @9#. An estimate ofb can
be calculated fromF1(K) by a linear least-squares fit to
log-log plot of K vs F1(K).
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B. Spectral analysis

Spectral analysis using nonparametric estimation te
niques such as averaged windowed periodograms~Welch’s
algorithm! is a long-established technique for estimating t
parameters of fractal behavior. Power-law exponentsa can
be calculated from the spectral density estimate by fittin
linear least-squares fit to a log-log plot of frequency vs sp
tral density estimate. The relationship between the spec
exponenta andH is known to bea52H21 for FGN and
a52H11 for FBM. Therefore, the relation between spe
tral and DFA power-law exponents~a andb, respectively! is
simply given bya5b21. However, the exact relation be
tween DFA and power spectral density spectral analysis
not yet been elucidated.

C. Relation between detrended fluctuation analysis and
spectral analysis

This well-known relation between the two power-law e
ponents suggests that a direct analytical link can be fo
between the two measures. To explore this link, consider
various steps used in defining the DFA measure.

The DFA of the sequenceu@n# is found according to the
algorithm described above. Let us denote the power spe
density of the discrete sequence asSu(v). The first step in
the algorithm subtracts the sample mean fromu@n# resulting
in a new sequenceu0@n# that has zero mean. This new pro
cess has a power spectral density everywhere equa
Su(v), except atv50 where it assumes a value of zero. T
summation of this zero-mean sequence generates the s
y@n#, as shown in Eq.~3!. This new sequence has a pow
spectral density given by

Sy~v!5uH~ej v!u2Su0
~v!

5H 0, v50

Su~v!

2~12cosv!
'

Su~v!

v2
for small v, vÞ0.

~14!

The sequencey@n# is then divided into segments of lengthK,
resulting in M segmentsym@n# for m50,1, . . . ,M21,
before detrending to produce the signalym,d@n#.

Several observations can be made about the set of sig
ym,d@n#. First, these are zero-mean signals since by defi
tion a least-squares fit will produce a zero-mean resid
The signals will be mutually uncorrelated at scales grea
than K, since variations on time scales longer thanK have
been removed. Moreover, the linear fit coefficients are c
sen so that the residual has a minimum variance~by defini-
tion of least squares!. The variance of a signal is equal to th
area under its power spectral density; therefore minimiz
the variance requires generating a detrended signal wh
power spectral density has the least area possible. Since
subtracted signalsym,t@n# have the bulk of their power a
frequencies below 1/K, the best way to minimize the vari
ance of the detrended signals is to set their power spe
density to zero over the range 0 – 1/K. It is easy to verify
numerically that the power spectral densities of detren
signals obey the following relation quite closely:
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6106 PRE 62C. HENEGHAN AND G. McDARBY
Sym,d
~v!'H 0, 0<v<p/K

Sym
~v! otherwise. ~15!

A complete detrended signalyd@n# is constructed by piecing
back the individual segments. The overall signal will ha
the property that it has negligible power at frequencies be
p/K. This signal will have a zero sample mean since e
individual segment has a sample zero mean. The varianc
the detrended signal is then calculated for each box, an
estimate ofF1(K) is defined as the average of the varianc
over all boxes:

F̂1@K#5
1

M (
m50

M21

vâr~ym,d@n# ! ~16!

where the caret denotes a statistical estimate. In fact,
easily shown that the sum of variances equals the varianc
the complete signalyd@n# in this particular case. To do so
assume a simple variance estimator such as

vâr~yd@n# !5
1

L (
n50

L21

~yd@n#2 ȳd@n# !2

5
1

L (
n50

L21

~yd@n# !2, ~17!

where the overbar denotes a sample average, and the
term on the right-hand side~RHS! derives from the fact tha
the sample mean of the overall detrended signal is 0. Eq
tion ~17! can be rewritten as

vâr~yd@n# !5
1

L (
n50

L21

~yd@n# !2

5
1

MK (
m50

M21

(
n50

K21

~ym,d@n# !2

5
1

M (
m50

M21 S (
n50

K21

~ym,d@n#2 ȳm,d@n# !2D ~18!

since ȳm,d@n#50 for each segment. The final term on th
RHS of Eq. ~18! can therefore be recognized a
vâr(ym,d@n#), which yields the equivalence between Eq.~17!
and Eq.~18!.

However, the variance of the signalyd@n# can also be
calculated by integrating its power spectral density. Assu
ing a window size ofK, this yields

F2@K#5vâr~nd@n# !

5E
v50

p

Syd
~v!dv

5E
v51/K

p Su~v!

2~12cosv!
dv, ~19!
w
h
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where we have used Eq.~15!. If our reasoning is correct
then F2(K)5F1(K). By considering the continuous-tim
analog of this approach, we can easily check for the obser
relation betweena andb. Assume the case of a continuou
time FGN or FBM with a known power-law power spectr
density,

Su~v!5
c

va , ~20!

wherec is an arbitrary constant. In the continuous case, su
mation is replaced by integration, which has the effect
dividing the power spectral density byv2. Therefore, fol-
lowing the same reasoning as for the discrete signal case
obtain

F2@K#5E
v51/K

v c

v2va
dv

5
2c

11a
v2~11a!U

v51/K

v5`

5
2c

11a
K11a}Kb, ~21!

whereb5a11 as experimentally observed.

D. Discrete formulation

A discrete formulation of Eq.~19! can be used to form an
estimate of the DFA directly from a power spectral dens
estimate. The discrete formulation is formed in the followi
way. A power spectral density of the original sequenceu@n#
is estimated using a standard nonparametric technique
as Welch’s algorithm. This leads to a set of discrete samp
of the estimated power spectral density denoted asS@k#
5Su(kDv) for 0<k<N/2, whereDv is the frequency spac
ing 2p/N, andN is the number of points used in forming th
individual periodograms that form the power spectral dens
estimate. The value ofS(v) at v5p/K can be estimated by
linear interpolation of its value at the integers closest tov
5p/K. DefiningL1 as the first integer greater thanp/K and
L2 as L121, the discrete approximation of Eq.~19! be-
comes

F2@K#5Dv (
k5L1

N/2
S@k#

2~12cos 2pk/N!
1S p

K
2L2DS@L2#

1S L12
p

K DS@L1#. ~22!

This formulation provides an explicit formula therefore f
evaluating the DFA simply from a power spectral dens
estimate. In this paper, we will term such a value aderived
DFA calculation~since it is derived from the PSD estimate!.
By examining the variation ofF2(K) as a function ofK, a
power-law exponentg can be derived from this discrete ap
proximation, which should be equal tob obtained by direct
calculation of DFA. The numerical simulations present
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here confirm the high level of agreement between the va
of b andg obtained using both derived and direct calculati
of DFA. The numerical simulations presented here confi
the high level of agreement between the values ofb and g
obtained using both derived and direct calculation of DF

III. RESULTS

A. Synthesized sequences with long-term correlation

Data sequences of lengthL532 768 representing discrete
time samples of FGN and FBM were generated using
spectral synthesis method. This works by generating a si
from a periodogram that has a power-law fall-off. Discre
frequency samplesG@k# were generated that decreased in
power-law fashion with frequency indexk, i.e.,

G@k#55
G0 , k50

G0

ka , 1<k,L/2

G0

~L/2!a , k5L/2

G* @k#, L/2,k<L.

~23!

The G@k# are given random uniformly distributed phase
and complex conjugate symmetry is preserved. For 0,a
,1, the inverse discrete Fourier transform of the seque
G@k# yields a real-valued discrete-index sequence repres
ing samples of FGN. Discrete FBM is generated using su
mation of the FGN sequences. Alternative synthesis te
niques ~such as that proposed by Davies and Harte@33#!
were also evaluated, and gave similar results in terms of
relationship between spectral analysis and DFA.

To verify the relations discussed previously, the dire
DFA algorithm was applied to control sequences genera
in this fashion. F1(K) was evaluated at octave-spaced v
ues ofK, i.e., 16,32, . . . , etc. In order to provide reasonab
estimates ofF1(K), the largest window size used wasL/32
51024. Following calculation of the DFA, a plot wa
formed of K vs F1(K). The power-law exponent was est
mated by a least-squares linear fit to the curve on a log
scale. The full range ofK values was used in fitting thi
curve. The slope of the resulting best fit line was then use
the estimate of the DFA power-law exponentb̂.

To confirm the hypothesis that the DFA power-law exp
nent can also be calculated via an estimate of the po
spectral density of a signal using Eq.~22!, we calculated a
power-law exponentĝ by a linear least-squares fit to the pl
of F2(K) vs K. To do this, power spectral density estimat
of the same sets of data were formed using the Welch a
rithm with rectangular nonoverlapping windows of leng
L/2. These PSD estimates were used in the summation o
~22!.

Figure 1 shows the results of these simulations by plott
the values ofb̂ againstĝ. The values plotted were based o
the mean exponents of 50 simulated sequences, with a r
of values forH from 0.05 to 0.95. The range ofb from 0 to
2 indicates the regime of FGN, while 2 to 4 corresponds
es
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FBM processes. For FGN, the agreement between direct
derived DFA exponents is excellent. For FBM processes,
agreement is also excellent up to the valueg53. At this
value the derived DFA exponent saturates. This saturatio
due to a windowing effect in the calculation of the PS
estimate. Numerical simulation with a Bartlett window
place of a rectangular window has shown that the expon
at which saturation occurs is dependent on the fall-off of
window’s aperiodic autocorrelation nearv50. This win-
dowing effect also limits the use of the rectangular windo
in spectral density analysis for FBM whereH.0.5. This
effect was first noted by Fougere in@34#. As a side note, if
FSD estimation based on Welch’s algorithm with a recta
gular window yields an estimatedH of close to 0.5 for a
FBM, a more suitable window such as the Bartlett or Ha
ning window should be applied in the spectral analysis.

We are also interested in the bias and variance of the D
measures when used to estimateH. Figure 2 shows numeri-
cal results that indicate the bias and variance of both esti
tors, by showing the mean estimated value ofH and its stan-
dard deviation for the synthesized signals. Since
observed estimatedH values obey approximately Gaussia
statistics, the standard deviation is a reasonable measu
error. The left-hand column of panels shows the estimateH
for FGN when direct~upper panel! and derived~lower panel!
DFA exponents are used. They share similar biases, and
variance of the derived DFA estimator is slightly lower th
that for the direct DFA. Both show quite a large bias ne
H50. The right panel shows estimates ofH for FBM using
F1(K) andF2(K). In this case, both estimators display si

FIG. 1. A comparison of estimated power-law exponents fr
synthesized data sequences using direct detrended fluctuation a
sis ~b!, and derived detrended fluctuation analysis~g!. The line
indicates ideal agreement between the two estimators, i.e.,b5g.
The values ofH used in the synthesis routines varied from 0 to
and both FGN and FBM sequences were simulated. Fifty seque
of lengthL532 768 were generated for each value ofH. The plus
symbols indicate the mean values of the calculated exponentsb
was calculated by evaluatingF1(K) at octave-spaced values ofK
from 32 to 2048. g was derived fromF2(K) based on power
spectral densities using Welch’s method~with a rectangular win-
dow of 16 384 samples!, and the same range ofK values as forb.
The value ofb,g52 indicates the division between FGN and FB
processes.
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nificant bias forH.0.5. As noted in Fig. 1, the derived DFA
exponent will saturate at a value ofb53 which corresponds
to H50.5 for FBM. As before, use of a nonrectangular wi
dow will remove this bias. As noted for FGN, the derive
DFA exponent has slightly lower variance.

A general rule for statistical estimators of the sort d
cussed here is that there is a trade-off between the bias
variance of the estimator. In this case it is possible to
crease the variance of our estimators by taking the lin
regression~from which the power-law exponent is extracte!
over a larger range of values. However, lowering the va
ance in this manner, will occur at the expense of increas
bias. This effect was also noted in@31#, where the authors
have attempted to provide guidelines for the optimum cho
to minimize the bias-variance product. Since both bias
variance contribute to the overall performance, a suita
technique for providing a global measure of performance
to use the mean square error~MSE!, which combines the
confounding effects of both bias and variance@31,25#. This
evaluates the average square error for the estimate ofH. The
error is defined as the difference between theH fed to the
synthesis routine and the estimatedH. Its value will be in-
fluenced not only by the estimator ofH, but also by the
synthesis technique used. However, since all estimators
using the same synthesized sequences, this effect shou
constant across all three. Figure 3 shows the MSE defined

FIG. 2. A comparison of the estimated Hurst parametersH using
both direct detrended fluctuation analysis~b!, and derived de-
trended fluctuation analysis~g!. For FGN, the ideal behavior is
given byb,g52H. For FBM, the expected behavior isb,g52H
12. The line indicates ideal agreement between the value ofH fed
into the simulations and the calculatedHest based onb andg. The
values ofH used in the synthesis routines varied from 0 to 1, a
both FGN and FBM sequences were simulated. Fifty sequence
length L532 768 were generated for each value ofH. The error
bars indicate the standard deviations on the estimated valuesH.
~a! shows the estimatedH using F1(K) for FGN processes.~b!
shows the estimatedH usingF1(K) for FBM processes.~c! shows
the estimatedH using F2(K) for FGN processes.~d! shows the
estimatedH usingF2(K) for FBM processes. The saturation in th
estimate ofH observed in~d! is explained in the text.
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three estimates ofH ~calculated from direct DFA, derived
DFA, and PSD analysis!, for both FGN and FBM signals
The MSE for the derived DFA and the PSD for FBM wit
H.0.5 is not shown as it has a large bias whose caus
known. This graph shows several points of interest. Fi
neither the derived nor the direct DFA perform consisten
better than each other. For example, the derived DFA
worse than the direct DFA estimator for FGN withH,0.5,
but better for FBM withH.0.5. Secondly, the MSE of the
PSD estimator is more consistent across the range ofH, and
is never significantly worse than either of the DFA estim
tors. This result confirms that use of the DFA should not
preferred over spectral analysis, and that in general q
similar performance can be expected for both types of e
mator. Interested readers can compare our results with
11 of @31#, which shows nearly identical behavior of th
MSE of the DFA estimator as a function ofH.

B. Application to physiological data

The results of Figs. 1 and 2 confirm that the two tec
niques for calculating DFA provide equivalent results, f
the case of signals with exact known long-term correlatio
which can be characterized by a single power-law expon
However, the link between PSD and DFA measures is
dependent upon the signal conforming to the model o
simple FGN or FBM. To confirm this, we will apply the
direct DFA and derived DFA measures to a set of data ch
acterizing heart-rate variability. These data sets record
interbeat intervals (R-R) between heartbeats recorded usi
a Holter monitor. These data sets form part of the Massac
setts Institute of Technology–Beth Israel Hospital~MIT-
BIH! heart-failure database. They comprise 12 records fr
normal patients and 15 records from heart-failure patie
These data sets can be modeled as a combination of a fr
stochastic process and a collection of frequency specific
chastic processes~with time scales set by breathing and oth
mechanisms!. Figure 4~a! shows a comparison of the DFA

d
of

FIG. 3. A comparison of the performance of PSD, direct DF
and derived DFA estimators forH. The mean squared error for eac
estimator was calculated based on 50 sequences of lengL
532 768 for various values ofH between 0 and 1. The MSE’s fo
the PSD and derived DFA estimators ofH.0.5 for FBM are not
included, as they have a known strong bias.
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calculated using both the direct and derived methods.
two curves agree closely. To verify that the slight error b
tween them is not biased, Fig. 4~b! shows the ratio of
F2(K)/F1(K) as a function ofK. The difference between th
two can probably be attributed to the process of numer
integration and deviations between the estimated PSD
the true PSD of the process.

In previous work, we used power spectral density e
mates to provide a characteristic frequency region that st
tically separated normal and abnormal subjects@35#. Since
our analysis shows that DFA is directly related to PSD
should also be possible to provide a region of separab
using either the direct or derived DFA measures. Figur
gives the results of calculatingF2(K) for this set of data.
The dotted curves indicate the normal data sets, and the
curves are abnormal sets. Within the regionS delineated by
the valuesK516 andK540, all of the normal data sets hav
higher values ofF2(K) than abnormal data sets. This su
gests that the dynamics of heart-rate variability are differ

FIG. 4. ~a! A comparison ofF1(K) andF2(K) calculated for a
data set from the Beth-Israel heart database~record number
a7257.asc!. This record contains 118 376R-R intervals. The circles
correspond to F1(K) and the plus symbols correspond
F2(K). ~b! The ratio ofF2(K)/F1(K) as a function ofK.
e
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for abnormal and normal subjects over time scales co
sponding to 16–40 beats. This is consistent with our estim
of a characteristic region of 16–32 beats based on P
analysis. It also confirms that the equivalence of DFA a
PSD based measures holds for real-world signals that c
bine long-term correlation and scale-specific effects.

As a final note, we should mention the difference in co
putational complexity between the direct and derived D
measures. The direct DFA can be shown to be anO(n2)
computation, whereas the derived DFA, which is built on
spectral density estimate, is only of orderO(n logn). As a
consequence, there is a significant difference in comp
tional requirements between the two methods~refer to Table
2 of @28#!.

IV. CONCLUSIONS

We have demonstrated analytically that detrended fluc
tion analysis can be related to the underlying power spec
density of the stochastic data. This analytical work is co
firmed by numerical simulations, and by the analysis of r
physiological signals extracted from the MIT-BIH electr
cardiogram database. The performance of spectral and D
measures has been compared using a mean square erro
terion, and found to be comparable.We conclude therefore
that DFA and spectral analysis will yield highly similar va
ues of H, and should not be treated as independent meas
of the long-term properties of a stochastic signal. This ex-
plains the effect noted in@9# in which the authors note tha
‘‘the values ofb and ofb8[2a21 are remarkably close to
each other’’~whereb represents the DFA exponent anda is
the PSD exponent!. Our results are also consistent with the
observation that the standard deviation of the direct D
exponent was lower than for the spectral based measure.

FIG. 5. Evaluation ofF2(K) ~the derived DFA measure! for all
27 data sets in the Beth-IsraelR-R interval database. The dotte
curves are calculated from normal data sets, and the solid curve
from abnormal data sets. For the values ofK from 16 to 40~denoted
by S in this plot!, F2(K) provides complete separation betwe
the two classes of data set, suggesting that the dynamics of h
rate variability differ significantly for normal and pathologica
hearts over a time scale corresponding to 16–40 beats.
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can be explained by the bias-variance trade-off. Their rep
explicitly notes a consistent bias between the spectral
DFA estimates. The derived DFA measure is also comp
tionally more attractive than the direct DFA, since it is
O(n logn) computation. We note as a caveat that the deri
DFA measure can suffer from saturation effects if we
trying to estimate exponents from sequences with spectr
the form 1/u f ua with a>2, although by different choice o
windows in PSD estimation the range of allowable proces
can be extended. We conclude that there is no partic
reason to recommend the use of detrended fluctuation an
g
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sis over spectral analysis for stochastic processes with lo
term correlation.
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