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Stochastic fractal signals can be characterized by the Hurst coeffi¢jenlich is related to the exponents
of various power-law statistics characteristic of these processes. Two techniques widely used to stiraate
spectral analysis and detrended fluctuation analj3isA). This paper examines the analytical link between
these two measures and shows that they are related through an integral transform. Numerical simulations
confirm this relationship for ideal synthesized fractal signals. Their performance as estimaltbis obm-
pared based on a mean square error criterion and found to be similar. DFA measures are derived for physi-
ological signals of heartbe&-Rintervals through the integral transform of a spectral density estimate. These
agree with directly calculated DFA estimates, indicating that the relationship holds for signals with nonideal
fractal properties. It is concluded that DFA and spectral measures provide equivalent characterizations of
stochastic signals with long-term correlation.

PACS numbegps): 05.40—a, 05.45.Tp, 87.16:e

[. INTRODUCTION analysis and the correlation function of the underlying pro-
cess is established |23], and that between spectral analysis
Stochastic fractal signals arc characterized by a variety ofnd fractal dimension was shown[i27]. In this vein, one of
unusual statistical properties, such as self-similgatyself-  the present author@nd othersattempted to provide further
affinity), power-law statistics, and correlation over all scaleslinkage between the different techniques available[ 28,
These signals are of interest since they can be used to mod@fplicit links were forged between wavelet variance estima-
phenomena as diverse as heart-rate varialfility7], the se-  tion, Allan variance, the Fano factor, and power spectral den-
quence of base pairs in DNP8,9], financial volatility[10— sity (PSD), a_lnd it was shown that all these measures could pe
12], gait fluctuation[13], image texture[14], and cloud expressed in terms of the power spectral density of the sig-
breaking[15]. They can be characterized in a number of"&!: . .
ways—Dby their fractal dimensioD, through the Hurst coef- Of the measures outlined above, detrended fluctuation
ficient H, or by estimating a scaling exponeat of their analy3|s (DFA)'has' recenjtly been widely adopted in the
power-law statistics. One motivation for estimatibgH, or physical and biological sciences. Some of these reports im-

S . that the DFA measure provides information that could
«a lies in the fact that these measures may potentially be usep y P

lassi discrimi b giff t sianal t have been otherwise obtained, or that it is inherently a
to classify or discriminate between different types of signal.gherjor measure to existing techniques. For examplg]in

e.g., Amaralet al. have suggested that a scaling exponeny o spectral and DFA measures are used to assess changes
may distinguish between healthy and pathological heart dyi, neuroanatomic function, with the implication that these
namics[5]. In order for such classification schemes to bemeasures were providing distinct views of the data. Indeed,
robust, estimates of the fractal dimension must be accurat@ the original paper introducing DFA, the authors proposed
and reliable, and hence much interest has centered on suji- as an independentmeasure of long-term correlation,
able approaches for estimating the fractal dimension, or recomplementary to spectral analy$. To our knowledge,
lated parameters, from experimental data sets. Techniquémwever, the link between DFA and existing measures has
that have been proposed for the estimation of fractal behawaot been clearly elucidated. It is the goal of this paper to
ior include correlograms and semivariografi$], spectral show that DFA is simply related to the power spectral den-
analysis[17], rescaled range analydi48], the Fano factor sity (and indeed can be derived directly from a spectral den-
[19], Allan variance [20], wavelet transform variance sity estimatg and hence to other measures such as wavelet
[21,22, detrended fluctuation analydig], scaled windowed variance. Allan variance, and the Fano factor. The motiva-
variance analysif23], dispersional analysi®4], and maxi- tion for this is to clearly demonstrate that DFA does not
mum likelihood estimatorgl4,25. Two good review articles provide any information that cannot be obtained through
of the range of techniques available are the papers by Malapectral analysis. We present numerical simulations of ideal
mud and Turcott¢16] and by Taqqu, Teverovsky, and Will- fractal signals in which a direct DFA calculatighy least-
inger[25]. These articles, and othdrk7,26, report on com-  squares detrendingnd a derived DFA measufealculated
parative empirical studies of these techniques and th&om the integration of a PSD estimagre shown to provide
performance of the various estimators. The theoretical relaequivalent results. In addition, we provide some comparison
tionship between some of these techniques has also beeithe performance of the DFA measure and spectral density
explored. For instance, the relationship between dispersionétchniques in estimatinig for ideal fractal signals, and show
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that their performance is similar. To confirm that the equiva-in their definition, since theoretically the continuous FBM
lence holds for signals that have a combination of fractal anéind FGN have infinite bandwidth. Hence the process of sam-
nonfractal behavior, we calculate direct and derived DFApling will introduce some aliasing. This is particularly sig-
measures for heart-rate signals. As further confirmation, thaificant for DFGN since the high frequency components are
DFA measure at a specific scale is shown to provide statisaf higher magnitude than for DFBM. In this paper, we will
tical discrimination between normal and pathological datadefine DFBM as samples of a continuous FBM, with a sam-
sets, as previously shown using a spectral measure[@8ly  pling rateTs,

Fractional Brownian motion and fractional gaussian noise b[n]= b(t)|t=”Ts’ ®)

Two classes of signal have been widely used to modeind take the aliasing effects as negligible. DFGN will then
stochastic fractal time series: fractional Gaussian nois@e defined as the first differences of the DFBM:
(FGN) and fractional Brownian motiofFBM). These are,
respectively, generalizations of white Gaussian noise and g[n]=b[n]—b[n—1]. (6)
Brownian motion. They are related by the fact that incre- ) o )
ments of a FBM form a FGN processr alternatively FBM Following on from th_ese definitions, the autocovariance e_lnd
represents cumulative summation or integration of a FGN autocorrelation functions of DFBM and DFGN can be writ-

A formal mathematical definition of continuous FBM was €N as

first offered by Mandelbrot and Van Nef29]. To summa- . _ <121 2H_ | LI2H
rize, a FBMb(t) is characterized by having Gaussian ampli- ELblj Ib[k1]=ka(|j |7+ K| =k, 0
tude statistics and an autocorrelation function of the form E[g[n+k]lg[n]]="rq K]
99
covb(ty)b(t)1=ky([ta|*"+]ta] = [ta— "), (D) 2

= Ik 124 2]k M+ k=121,
wherek; is a constant, and the parameitevaries between 0 2
and 1. H is usually referred to as the Hurst parameter as it (8)
can be traced to the parameter used by Hurst in his funda-
mental studies in the fieli18]. Since this autocorrelation wherek, is a constant, and? is the variance ok[n]. Since
function is not a function of,—t,, the power spectral den- most real data sets are measured samples of some underlying
sity of FBM is not well defined. However, by appealing to continuous process, it seems reasonable to use the DFBM
generalized concepts such as the Wigner-Ville spectrurand DFGN models throughout this paper.
[30], a limiting power spectrum can be obtained as follows: As clearly noted if31], some of the estimators &f have
a built-in assumption as to whether the signal under analysis
S(f)= o @) is FGN or FBM, and will provide incorrect estimatestafif
[f|e the signal model is incorrect. This point is often overlooked
or ignored by many researchers. For example, dispersional
wherea=2H+ 1. The scaling exponenit of this power-law  analysis is appropriate only for FGN, whereas scaled win-
spectrum lies between 1 and 3, sirtdds constrained to lie  dowed variance is better for FBM3]. Some methodésuch
between 0 and 1. as spectral analysis and DF#an be used for both FGN and
The autocorrelation function for fractional Gaussian noiseFBM processes.
can be obtained by defining a procegs) as the increments  For completeness we mention that the Hurst parantéter

of a corresponding FBNb(t), to yield is related to the Hausdorff-Besicovich dimensibrthrough
B oH H=2-D [32]. D is the parameter most generally defined
covg(ty)g(tz)]1=Ka([ta—ty[*), (3 as the “fractal dimension,” and lies between 1 and 2 for

where k; is a constant, andd is the Hurst parameter as FGN and FBM.

before. The Fourier transform of this autocorrelation func-

tion is also not well defined, but as for FBM a limiting power Il. THEORY
spectrum can be found as follows: Many different techniques for estimatirig) from experi-
K mental data sets have been proposed. This paper focuses on
Sy(9)= 1z (4) estimatingH using. power spectral density estimation_and
] detrended fluctuation analysis, and on how these estimates

lated.
wherea=2H—1. SinceH lies between 0 and 1, the scaling are related

exponentx of the power-law spectrum of FGN lies between
—1 and 1. Therefore the complete set of FGN and FBM
stochastic sequences are defined to have power-law spectraDetrended fluctuation analysis was originally proposed as
with exponents lying betweer1 and 3. Further fractal pro- a technique for quantifying the nature of long-range correla-
cesses could be defined with PSD power-law exponents outions by Penget al.in 1994[8]. It was introduced in order to
side this range, but in this paper we will restrict our attentionpermit the detection and quantification of long-range corre-
to FGN and FBM as defined above. lations in DNA sequences. As implied by its name, it was
Discrete versions of FBM and FGNDFBM and DFGN, conceived as a method for detrending local variability in a
respectively can also be formeflLl4]. Some care is needed sequence of events, and hence providing insight into long-

A. Detrended fluctuation analysis
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term variations in the data sets. This technique has subse- B. Spectral analysis
quently been used in the analysis of heart-rate variability Spectral analysis using nonparametric estimation tech-

[1-18), gait behaviof13], financial volatility[10-12, me-  njqes such as averaged windowed periodogrameich’s
teorology [15], and geology[16]. Different authors have 5 40rithm is a long-established technique for estimating the

used slightly alternative terminology to describe this tECh'parameters of fractal behavior. Power-law exponentsan

nique. In[31], DFA is cast as a special case of scaled win-pq ¢aicylated from the spectral density estimate by fitting a

dowed variance referred to”as linear regression detrendegl,q5y least-squares fit to a log-log plot of frequency vs spec-

scaled windowed variance,” and Taqqu, Teverovsky, anqry| gensity estimate. The relationship between the spectral

Willinger refer to it as the “residuals of regressiof25]. exponenta andH is known to bea=2H—1 for FGN and
The DFA algorithm consists of the following steps. a=2H+1 for FBM. Therefore, the relation between spec-
() Thg data to be analyzed are a discrete-index sequengg,| 4nd DEA power-law exponén(& and, respectivelyis

u[n] defined for G=n<L—1. It can be assumed that the simply given bya=B— 1. However, the exact relation be-

sampling rate for this sequence is unity without loss of genyeen DFA and power spectral density spectral analysis has
eralization. The average value of this sequence is set to zerg yet been elucidated.

by subtracting the sample mean. A running summation se-
quencey[ n] is constructed from this sequence using the fol-

. L C. Relation between detrended fluctuation analysis and
lowing recursion:

spectral analysis

nt This well-known relation between the two power-law ex-

y[n]=k20 ufk], y[0]=0, y[n]=0 Vn<0, (9 ponents suggests that a direct analytical link can be found
between the two measures. To explore this link, consider the

which can be recognized as the output of a simple infinite/arious steps used in defining the DFA measure.

impu|se responsé|R) filter app“ed tou[n]: The DFA of the SequenClﬂ![n] is found according to the
algorithm described above. Let us denote the power spectral
Y(2) 1 density of the discrete sequenceRgw). The first step in
H(z)= (W) = Pp— (10 the algorithm subtracts the sample mean figm] resulting

in a new sequencey[ n] that has zero mean. This new pro-
cess has a power spectral density everywhere equal to
Su(w), except atw=0 where it assumes a value of zero. The
summation of this zero-mean sequence generates the series

[n]=y[mK+n], O=m=M-1, O=n=K-1 y[n], as shown in Eq(3). This new sequence has a power
Ym y o o '(11) spectral density given by

H(e*)[?Sy (@)

(ii) The entire sequence is divided iftbnonoverlapping
blocksy,,[n], each containing samplegso thatM =L/K):

The local “trend” in each block is defined to be a linear Sy(w)=

least-squares fit to the samples in that block. The trend is 0 w=0
denoted ay, ([ n]. '
(iii) A detrended signal is defined for each block as the = Sy(w) S,(w)
difference between the original signal and the local trend for 2(1-cosw) = w? for small w, 0.

that block, leading to
(14

Ymd N]=YmdNl—Ym[n], O0=m=M-1, OsnsK-1

(12 The sequencg[n] is then divided into segments of lendth
esulting in M segmentsy,[n] for m=0,1,... M—1,
efore detrending to produce the sigya 4[n].

Several observations can be made about the set of signals

Ymdln]. First, these are zero-mean signals since by defini-

The variance of the detrended signal is calculated for eac

block. F(K) is then defined as the average of the vari-
ances over all boxes:

M—1 tion a least-squares fit will produce a zero-mean residual.
— The signals will be mutually uncorrelated at scales greater
Fi(K)=— va nj). 13 ) . .
1K) M Eo Yol 1) 13 than K, since variations on time scales longer tharhave

been removed. Moreover, the linear fit coefficients are cho-
The functional dependence Bf;(K) is obtained by evalua- sen so that the residual has a minimum variafigedefini-
tions over all block size&. It has been shown by Buldyrev tion of least squargésThe variance of a signal is equal to the
et al. that F,(K) varies as a power law i, i.e., F{(K) area under its power spectral density; therefore minimizing
~KP# for sequences with power-law long-range correlationsthe variance requires generating a detrended signal whose
such as FBM and FGIO]. An alternative derivation of this power spectral density has the least area possible. Since the
relationship is given i25]. The parameteB can therefore subtracted signaly,, [n] have the bulk of their power at
be used to estimatHl, since it has been empirically deter- frequencies below K/, the best way to minimize the vari-
mined that B—1=«, the spectral power-law exponent, ance of the detrended signals is to set their power spectral
which in turn can be related td [9]. An estimate of3 can  density to zero over the range 0K1/It is easy to verify
be calculated fronf((K) by a linear least-squares fit to a numerically that the power spectral densities of detrended
log-log plot of K vs F;(K). signals obey the following relation quite closely:
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0, Osw=mul/K where we have used E@l5). If our reasoning is correct,
S [(w)= . (15  then F,(K)=F4(K). By considering the continuous-time
a Sy,(w)  otherwise. analog of this approach, we can easily check for the observed

) ) o relation betweerr and 8. Assume the case of a continuous-
A complete detrended signgd[ n] is constructed by piecing  ime FGN or FBM with a known power-law power spectral
back the individual segments. The overall signal will havedensity,

the property that it has negligible power at frequencies below

/K. This signal will have a zero sample mean since each

individual segment has a sample zero mean. The variance of Sy(w)= ia (20)
the detrended signal is then calculated for each box, and an @

estimate ofF((K) is defined as the average of the variances . . .
over all boxes: wherec is an arbitrary constant. In the continuous case, sum-

mation is replaced by integration, which has the effect of

Vo1 dividing the power spectral density hy?. Therefore, fol-

. 1 ~ lowing the same reasoning as for the discrete signal case, we
FilK]= 7 2 var(ymln]) (16 obtain
where the caret denotes a statistical estimate. In fact, it is ®
easily shown that the sum of variances equals the variance of FaiK]= f Koz do
the complete signayy4[n] in this particular case. To do so, emterw
assume a simple variance estimator such as oo
__—C —a+a
1 L—1 1t+a w=1/K
var(ydn])= 2, (valn]-¥dn)? .
=——KlToxcK?, (21)
= 1+«
= [nz::o (yalnD?, (17 where=a+1 as experimentally observed.
where the overbar denotes a sample average, and the final D. Discrete formulation

term on the right-hand sid&RHS) derives from the fact that A discrete formulation of Eq(19) can be used to form an
the sample mean of the overall detrended signal is 0. Equasstimate of the DFA directly from a power spectral density

tion (17) can be rewritten as estimate. The discrete formulation is formed in the following
way. A power spectral density of the original sequenfe]
1Lt is estimated using a standard nonparametric technique such
var(yg[n])=— >, (y4ln])? as Welch’s algorithm. This leads to a set of discrete samples
L <o of the estimated power spectral density denotedS@s]
M1 K1 =S,(kAw) for 0<k=N/2, whereAw is the frequency spac-
1 S S 5 ing 27/N, andN is the number of points used in forming the
T MK & &, (Ym.aln1D) individual periodograms that form the power spectral density
estimate. The value @&(w) at w=7/K can be estimated by
M-1 /K-1 linear interpolation of its value at the integers closestoto
=M nZO (YmdlN]=Ymdn])?| (18  =m/K. D+efiningL+ as the first integer greater tharK and
= = L™ asL™—1, the discrete approximation of E¢L9) be-
o ) comes
sinceyn 4[n]=0 for each segment. The final term on the
RHS of Eq. (18) can therefore be recognized as N/2 K]
var(ym qln]), which yields the equivalence between EL7) _ T -
and Eq.(18). FalK] A"’k:EL+ 2(1—cos 27k/IN) +(K L )S[L ]
However, the variance of the signgj[n] can also be
calculated by integrating its power spectral density. Assum- T
ing a window size oK, this yields + L= R) S[LT] (22
Fo[K]=Vvar(vg[n]) This formulation provides an explicit formula therefore for

evaluating the DFA simply from a power spectral density
m estimate. In this paper, we will term such a valudeaived
= f Sy,(w)dw DFA calculation(since it is derived from the PSD estimate
©=0 By examining the variation oF,(K) as a function oK, a
power-law exponeny can be derived from this discrete ap-
_ f” Su(@) de (19) proximation, which should be equal ® obtained by direct
w=1K 2(1—cosw) "’ calculation of DFA. The numerical simulations presented
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here confirm the high level of agreement between the values .. 4
of B andvy obtained using both derived and direct calculation
of DFA. The numerical simulations presented here confirm g
the high level of agreement between the valuegaind y % 3} (O
obtained using both derived and direct calculation of DFA. %
Ny
lll. RESULTS S 2l
A. Synthesized sequences with long-term correlation %
Data sequences of length= 32 768 representing discrete- a8
time samples of FGN and FBM were generated using the g f
spectral synthesis method. This works by generating a signal %
from a periodogram that has a power-law fall-off. Discrete- E
frequency sample§[ k] were generated that decreased ina & ¢ . . .
power-law fashion with frequency indéx i.e., 0 EST/MA1TED DIF!ECT2DFA EXPON%NT B 4
, FIG. 1. A comparison of estimated power-law exponents from
Go, k=0 synthesized data sequences using direct detrended fluctuation analy-
Gy sis (B), and derived detrended fluctuation analy&js. The line
@ 1sk<L/2 indicates ideal agreement between the two estimators,d=ey.
G[k]= (23) The values oH used in the synthesis routines varied from 0 to 1,
Gy and both FGN and FBM sequences were simulated. Fifty sequences
W’ k=L/2 of lengthL =32 768 were generated for each value-bfThe plus
symbols indicate the mean values of the calculated exponepts.
\ G*[k], L/2<ksL. was calculated by evaluatinig,(K) at octave-spaced values Kf

from 32 to 2048. y was derived fromF,(K) based on power
spectral densities using Welch's meth@aith a rectangular win-
The G[k] are given random uniformly distributed phases,dow of 16 384 sample¢sand the same range &f values as foiB.
and complex conjugate symmetry is preserved. Fara0 The value ofg, y=2 indicates the division between FGN and FBM
<1, the inverse discrete Fourier transform of the sequencerocesses.
G[ k] yields a real-valued discrete-index sequence represent-
ing samples of FGN. Discrete FBM is generated using sums

mation of the FGN sequences. Alternative synthesis tec FBM processes. For FGN, the agreement between direct and

niques (such as that proposed by Davies and HAg8)) derived DFA exponents is excellent. For FBM processes, the
o . agreement is also excellent up to the valye 3. At this
were also evaluated, and gave similar results in terms of the . ) .
. . : value the derived DFA exponent saturates. This saturation is
relationship between spectral analysis and DFA.

To verify the relations discussed previously, the direct
DFA algorithm was applied to control sequences generate
in this fashion. F;(K) was evaluated at octave-spaced val-
ues ofK, i.e., 16,32, ... ,etc. In order to provide reasonable
estimates of 1(K), the largest window size used wh#32
=1024. Following calculation of the DFA, a plot was
formed of K vs F(K). The power-law exponent was esti-
mated by a least-squares linear fit to the curve on a log-lo

scale. The full range oK values was used in fitting this ular window yields an estimated of close to 0.5 for a

curve. The slope of the resulting best fit line was then used a%BM a more suitable window such as the Bartlett or Han-
the estimate of the DFA power-law expongt ning window should be applied in the spectral analysis.

To confirm the hypothesis that the DFA power-law expo- e are also interested in the bias and variance of the DFA
nent can also be calculated via an estimate of the poweheasures when used to estimbteFigure 2 shows numeri-
spectral density of a signal using E@2), we calculated a ¢ results that indicate the bias and variance of both estima-
power-law exponeny by a linear least-squares fit to the plot tors, by showing the mean estimated valuédadnd its stan-
of F5(K) vs K. To do this, power spectral density estimatesgard deviation for the synthesized signals. Since the
of the same sets of data were formed using the Welch alggspserved estimateHl values obey approximately Gaussian
rithm with rectangular nonoverlapping windows of length statistics, the standard deviation is a reasonable measure of
L/2. These PSD estimates were used in the summation of Egyror. The left-hand column of panels shows the estimeted
(22. for FGN when directupper panegland derivedlower panel

Figure 1 shows the results of these simulations by plotfin®>FA exponents are used. They share similar biases, and the
the values of3 againsty. The values plotted were based on variance of the derived DFA estimator is slightly lower than
the mean exponents of 50 simulated sequences, with a rangieat for the direct DFA. Both show quite a large bias near
of values forH from 0.05 to 0.95. The range @ffrom 0 to  H=0. The right panel shows estimatestbffor FBM using
2 indicates the regime of FGN, while 2 to 4 corresponds td=;(K) andF,(K). In this case, both estimators display sig-

due to a windowing effect in the calculation of the PSD
gstimate. Numerical simulation with a Bartlett window in
place of a rectangular window has shown that the exponent
at which saturation occurs is dependent on the fall-off of the
window’s aperiodic autocorrelation near=0. This win-
dowing effect also limits the use of the rectangular window
in spectral density analysis for FBM whei¢>0.5. This
effect was first noted by Fougere [i84]. As a side note, if
#SD estimation based on Welch’s algorithm with a rectan-
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FGN FBM 0.008
T P
0.8 F1(K) /l/l/r 0.8 F1(K) 4/1/“ -_— FGN PSD
0.6 A 0.6 r,r _ 0.006} - EgI\NA ESE
e 4 (<] ——
T0.4 v TV.4 T = 1Kl
02 | 3" 0.2 1 5 —— FBM F1 [K]
0 oot (a) 0 G (b) “:,‘_’0‘004. —— FGN F2[k]
- . 4 o
0 02040608 1 0 02040608 1 e — FBM Fz[k]
H H 3
=
= ~ 1 = — 0.002f
0.8 oK) a7 0.8 2K o
0.6 e .0.6 i
17} s 17} o I 11 1. v | n
T4 " Tb4 - 0-0005 0.2 04 08 0.8 1
02 ..’ 0.2 A7 rue
o - @ T o C _ _
z Z FIG. 3. A comparison of the performance of PSD, direct DFA,
0 02040608 1 0 02040608 1 and derived DFA estimators fét. The mean squared error for each
H H estimator was calculated based on 50 sequences of leingth
FIG. 2. A comparison of the estimated Hurst parameteusing =32 768 for various values dfl between 0 and 1. The MSE'’s for

both direct detrended fluctuation analysig), and derived de- the PSD and derived DFA estimators ldf>0.5 for FBM are not

trended fluctuation analysi€y). For FGN, the ideal behavior is ncluded, as they have a known strong bias.
given by B,y=2H. For FBM, the expected behavior & y=2H
+2. The line indicates ideal agreement between the valu¢ fefd
into the simulations and the calculateid based ong andy. The  three estimates ofl (calculated from direct DFA, derived
values ofH used in the synthesis routines varied from 0 to 1, andDFA, and PSD analysjsfor both FGN and FBM signals.
both FGN and FBM sequences were simulated. Fifty sequences dfhe MSE for the derived DFA and the PSD for FBM with
length L=32768 were generated for each valuetbf The error  H>0.5 is not shown as it has a large bias whose cause is
bars indicate the standard deviations on the estimated valuds of known. This graph shows several points of interest. First,
(a) shows the estimatettl using F,(K) for FGN processestb)  neither the derived nor the direct DFA perform consistently
shows the estimatedl usingF,(K) for FBM processesic) shows  petter than each other. For example, the derived DFA is
the estimatecH using F5(K) for FGN processesid) shows the  \yorse than the direct DFA estimator for FGN with< 0.5,
est!mated-l using FZ(K)_for F_BM pro_cessm_as. The saturation in the but better for FBM withH>0.5. Secondly, the MSE of the
estimate o observed ind) is explained in the text. PSD estimator is more consistent across the rang¢ aihd
is never significantly worse than either of the DFA estima-
tors. This result confirms that use of the DFA should not be
nificant bias forH >0.5. As noted in Fig. 1, the derived DFA preferred over spectral analysis, and that in general quite
exponent will saturate at a value 8&= 3 which corresponds similar performance can be expected for both types of esti-
to H=0.5 for FBM. As before, use of a nonrectangular win- mator. Interested readers can compare our results with Fig.
dow will remove this bias. As noted for FGN, the derived 11 of [31], which shows nearly identical behavior of the
DFA exponent has slightly lower variance. MSE of the DFA estimator as a function bf.

A general rule for statistical estimators of the sort dis-
cussed here is that there is a trade-off between the bias and
variance of the estimator. In this case it is possible to de-
crease the variance of our estimators by taking the linear The results of Figs. 1 and 2 confirm that the two tech-
regressior(from which the power-law exponent is extracted niques for calculating DFA provide equivalent results, for
over a larger range of values. However, lowering the varithe case of signals with exact known long-term correlations
ance in this manner, will occur at the expense of increasingvhich can be characterized by a single power-law exponent.
bias. This effect was also noted [B1], where the authors However, the link between PSD and DFA measures is not
have attempted to provide guidelines for the optimum choicelependent upon the signal conforming to the model of a
to minimize the bias-variance product. Since both bias andimple FGN or FBM. To confirm this, we will apply the
variance contribute to the overall performance, a suitablelirect DFA and derived DFA measures to a set of data char-
technique for providing a global measure of performance isacterizing heart-rate variability. These data sets record the
to use the mean square errdiSE), which combines the interbeat intervalsR-R) between heartbeats recorded using
confounding effects of both bias and variari@4,25. This  a Holter monitor. These data sets form part of the Massachu-
evaluates the average square error for the estimdte ®he  setts Institute of Technology—Beth Israel HospitMIT-
error is defined as the difference between khdéed to the  BIH) heart-failure database. They comprise 12 records from
synthesis routine and the estimatdd Its value will be in- normal patients and 15 records from heart-failure patients.
fluenced not only by the estimator &f, but also by the These data sets can be modeled as a combination of a fractal
synthesis technique used. However, since all estimators astochastic process and a collection of frequency specific sto-
using the same synthesized sequences, this effect should bleastic processdwiith time scales set by breathing and other
constant across all three. Figure 3 shows the MSE defined fanechanisms Figure 4a) shows a comparison of the DFA

B. Application to physiological data
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10} * (a)

10° 10' 10° 10° 10* 0 10°
Block Length K Block Length K

| FIG. 5. Evaluation of,(K) (the derived DFA measuréor all
10 y y g 27 data sets in the Beth-IsraBIR interval database. The dotted
curves are calculated from normal data sets, and the solid curves are
from abnormal data sets. For the value&dfom 16 to 40(denoted
by Sin this ploy, F,(K) provides complete separation between
the two classes of data set, suggesting that the dynamics of heart-
rate variability differ significantly for normal and pathological
. hearts over a time scale corresponding to 16—40 beats.

o
+
-

F(K)/F (K)
(=]

for abnormal and normal subjects over time scales corre-

sponding to 16—40 beats. This is consistent with our estimate

of a characteristic region of 16—32 beats based on PSD

(b) analysis. It also confirms that the equivalence of DFA and

PSD based measures holds for real-world signals that com-

0 — — = . bine long-term correlation and scale-specific effects.

10 10 10 10 10 As a final note, we should mention the difference in com-
Block Length K putational complexity between the direct and derived DFA

FIG. 4. (a) A comparison ofF ;(K) andF,(K) calculated fora Measures. The direct DFA can be shown to t_)eC)a(n_nZ)

data set from the Beth-Israel heart databasecord number COmMputation, whereas the derived DFA, which is built on a

a7257.asc This record contains 118 3M-Rintervals. The circles  SPectral density estimate, is only of ord@(nlogn). As a

correspond toF;(K) and the plus symbols correspond to consequence, there is a significant difference in computa-

F,(K). (b) The ratio ofF,(K)/F,(K) as a function oK. tiona[l re]quirements between the two methaader to Table

2 of [28]).

-1

10

calculated using both the direct and derived methods. The
two curves agree closely. To verify that the slight error be-
tween them is not biased, Fig.(B} shows the ratio of We have demonstrated analytically that detrended fluctua-
F,(K)/F,(K) as a function oK. The difference between the tion analysis can be related to the underlying power spectral
two can probably be attributed to the process of numericatlensity of the stochastic data. This analytical work is con-
integration and deviations between the estimated PSD ariirmed by numerical simulations, and by the analysis of real
the true PSD of the process. physiological signals extracted from the MIT-BIH electro-

In previous work, we used power spectral density esti-cardiogram database. The performance of spectral and DFA
mates to provide a characteristic frequency region that statisneasures has been compared using a mean square error cri-
tically separated normal and abnormal subjd&5]. Since terion, and found to be comparabMe conclude therefore
our analysis shows that DFA is directly related to PSD, itthat DFA and spectral analysis will yield highly similar val-
should also be possible to provide a region of separabilityes of H, and should not be treated as independent measures
using either the direct or derived DFA measures. Figure ®f the long-term properties of a stochastic signahis ex-
gives the results of calculating,(K) for this set of data. plains the effect noted if9] in which the authors note that
The dotted curves indicate the normal data sets, and the solithe values of3 and of 3'=2a—1 are remarkably close to
curves are abnormal sets. Within the reg®delineated by each other”’(where g represents the DFA exponent ands
the valueK = 16 andK =40, all of the normal data sets have the PSD exponehtOur results are also consistent with their
higher values of-,(K) than abnormal data sets. This sug- observation that the standard deviation of the direct DFA
gests that the dynamics of heart-rate variability are differenexponent was lower than for the spectral based measure. This

IV. CONCLUSIONS
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can be explained by the bias-variance trade-off. Their reporsis over spectral analysis for stochastic processes with long-
explicitly notes a consistent bias between the spectral antkrm correlation.

DFA estimates. The derived DFA measure is also computa-

tionally more attrac_tlve than the direct DFA, since it is an ACKNOWLEDGMENTS

O(nlogn) computation. We note as a caveat that the derived

DFA measure can suffer from saturation effects if we are The authors are grateful to P. Curran, M. C. Teich, S. B.
trying to estimate exponents from sequences with spectra dfowen, B. Jost, and K. Vibe-Rheymer for useful discussion.
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